- -

FORTH-ICS

Philipp Woelfel & Panagiota (Youla) Fatourou
University of Crete, Department of Computer Science
Foundation for Research and Technology - Hellas

Distributed Computing Mexico Summer School
June 2025, Huatulco, Mexico

* A set stores unique keys and supports the
following operations:

— insert(int key): inserts key to the set (if key not already
In set); returns FALSE if key already in the set and
TRUE otherwise

— delete(int key): deletes key from the set (if key is in the
set); returns FALSE if key is not in the set and TRUE
otherwise

— search(int key): searches for key and returns TRUE if
it is in the set and FALSE otherwise.

* An operation is called successful if it returns
TRUE and unsuccessful if it returns FALSE.

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

222
224
226
228
230
232
234

412

Lewis & Denenberg, Data Structures & Their Algorithms

40 OO0 228
H
20 232
10 224 10| +—==20 | —|+—=30| —=={40

30 222 T T T T

224 232 222 000

228

« Each node has two fields:
« key: integer
« next: pointer to next node of the list.

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

H T

\ 4 v W_]
-00 j—» +00 I =00
| | ;_J

Initial state

H

10

)

30

%_.

T

+00

)

———

Nodes with keys 10 and 30 are regular

» The list contains regular nodes and two sentinel nodes,
called Head (H) and Tail (T), that point to the first and
last element of the list, respectively.

» Sentinel nodes are initially in the list and are never
deleted; the key of node pointed to by H is MININT (- o)
and the key of node pointed to by T is MAXINT (+ o).

» H and T never change.

Distributed Computing Mexico Summer School -Greece

Panagiota Fatourou

boolean search(int key) {
NODE *curr; boolean result;

2. curr = H;

3. while (curr->key < key)
4. curr = curr->next;

5. if (key == curr->key)

6
14

: result = TRUE:;
. else result = FALSE; Search(20)
9. return result;
}
H T
BE

Panagiota Fatourou Distributed Computing Mexico Summer School

boolean search(int key) {
NODE *curr; boolean result;

2. curr = H;

3. while (curr->key < key)
4. curr = curr->next;

5. if (key == curr->key)

6
14

: result = TRUE:;
. else result = FALSE; Search(20)
9. return result;
}
H

Panagiota Fatourou Distributed Computing Mexico Summer School

boolean search(int key) {
NODE *curr; boolean result;

2. curr = H;

3. while (curr->key < key)
4, curr = curr->next;

5. if (key == curr->key)

6
14

: result = TRUE:;
. else result = FALSE; Search(20)
9. return result;
}
H curr T
BE

Panagiota Fatourou Distributed Computing Mexico Summer School

boolean search(int key) {
NODE *curr; boolean result;

2. curr = H;

3. while (curr->key < key)
4, curr = curr->next;

5. if (key == curr->key)

6
14

: result = TRUE:;
. else result = FALSE; Search(20)
9. return result;
}
H curr T
BE

Panagiota Fatourou Distributed Computing Mexico Summer School

boolean search(int key) {
NODE *curr; boolean result;

2. curr = H;

3. while (curr->key < key)
4. curr = curr->next;

5. if (key == curr->key)

6
14

: result = TRUE:;
. else result = FALSE; Search(20)
9. return result;
}
H

Panagiota Fatourou Distributed Computing Mexico Summer School

boolean search(int key) {
NODE *curr; boolean result;

2. curr = H;

3. while (curr->key < key)
4. curr = curr->next;
3)
6
14

. if (key == curr->key)
. result= TRUE: Search(20)— FALSE
. else result = FALSE;

9. return result;

Panagiota Fatourou Distributed Computing Mexico Summer School

boolean insert(int key, T x) {
// code for process p
Node *pred, *curr;
boolean result;

11. pred = H;

12. curr = pred->next;

13. while (curr->key < key) {
14. pred = curr;

15. curr = curr->next; 2o
} —

H pred curr

10 | J~{ao] J~[=] |

)

16. if (key == curr->key)
result = FALSE;
17. else {
18. NODE *node = newcell(NODE); Insert(20)
19. node->next = curr;
20. node->key = key;
21. pred->next = node;
22. result = TRUE;

}

24. return result;

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

node

boolean insert(int key, T x) {
// code for process p

Node *pred, *curr;
boolean result; l J

11. pred = H; H pred curr
12. curr = pred->next;

13. while (curr->key < key) {

14. pred=curr; ' .
15. curr = curr->next; -00 3 10 + 30 %—» +00 j
} S |

16. if (key == curr->key)
result = FALSE;
17. else {
18. NODE *node = newcell(NODE);
19. node->next = curr;
20. node->key = key:
21. pred->next = node; Insert(20)
22. result = TRUE;

}

24. return result;

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

boolean insert(int key, T x) { node

// code for process p
Node *pred, *curr;
boolean result; 20

11. pred = H; H pred curr
12. curr = pred->next;

13. while (curr->key < key) {

14. pred=curr; ' .
15. curr = curr->next; -00 3 10 + 30 %—» +00 j
} S |

16. if (key == curr->key)
result = FALSE;
17. else {
18. NODE *node = newcell(NODE);
19. node->next = curr;
20. node->key = key:
21. pred->next = node; Insert(20)
22. result = TRUE;

}

24. return result;

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

boolean insert(int key, T x) {
// code for process p

Node *pred, *curr; A

boolean result; 20 :]

11. pred = H; red \ curr

12. curr = pred->next; H P T
13. while (curr->key < key) { ‘ / \

14. pred=curr; ' Y — 4
15. curr = curr->next; -00 j 10 I J 30 %—» +00 j
} ~— |

16 lf (key == Cur'r‘—>key)
result = FALSE;
17. else {
18. NODE *node = newcell(NODE):
19. node->next = curr;
20. node—>key = key;
21. pred->next = node; Inse rt(ZO)
22. result = TRUE;

}

24. return result;

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

boolean insert(int key, T x) {
// code for process p

Node *pred, *curr; A

boolean result; 20 :]

11. pred = H; red \ curr

12. curr = pred->next; H P T
13. while (curr->key < key) { ‘ / \

14. pred=curr; ' Y — 4
15. curr = curr->next; -00 j 10 I J 30 %—» +00 j
} ~— |

16. if (key == curr->key)
result = FALSE;
17. else {
18. NODE *node = newcell(NODE);
19. node->next = curr;
20. node->key = key:

21. pred->next = node; Insert(20) — TRUE

22. result = TRUE;
}

24. return result;

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

boolean delete(int key) {
// code for process p
Node *pred, *curr;
boolean result;

H pred curr T
| | | | 26. pred = H;
) (j 27. curr = pred->next;
i_} 10 I 30 I 2 28. while (curr->key < key) {
29. pred=curr;
30. curr = curr->next;
}
31. if (key == curr->key) {
Delete(30) 32. pred->hext = curr->next;
33. result = TRUE;
}

34. else result = FALSE;

36. return result;

}

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

boolean delete(int key) {
// code for process p
Node *pred, *curr;
boolean result;

H pred curr T
| | I | 26. pred = H;
=) - £ \Ij 27. curr = pred->next;
—] 30 I S 28. while (curr->key < key) {
29. pred=curr;
30. curr = curr->next;
}
31. if (key == curr->key) {
Delete(30) 32. pred->next = curr->next;
33. result = TRUE;
}

34. else result = FALSE;

36. return result;

}

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

boolean delete(int key) {
// code for process p
Node *pred, *curr;

boolean result;
H pred curr T
| | I | 26. pred = H;
=) - £ \Ij 27. curr = pred->next;
—] 30 I S 28. while (curr->key < key) {
29. pred=curr;
30. curr = curr->next;
}
31. if (key == curr->key) {
De|ete(30) — TRUE 32. pred->next = curr->next;
33. result = TRUE;
}

34. else result = FALSE;

36. return result;

}

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

1. Draw a linked list with >6 regular nodes.

2. Trace the execution of a successful and an
unsuccessful Search operation.

3. Trace the execution of two successful Insert
operations.

4. Trace the execution of two successful Delete
operations.

5. Trace the execution of an unsuccessful Insert
and an unsuccessful Delete operation.

6. Draw (abstract and more detailed) figures to
illustrate the traces.

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

Concurrent Setting

G 2 Funded by the
reece European Union
NATIOMAL RECOVERY AND RESILIENCE PLAN

NextGenerationEU

Panagiota Fatourou Distributed Computing Mexico Summer School

* The system is Process Process Process
asynchronous. 1 2 n

= Processes
communicate by
accessing shared
variables (base

shared variables

objects).

= |[n addition to atomic ATOMIC boolean CAS(Variable V, Value v,
Read and Write, a Value v, {
process may execute (Y - VO'd).{
an atomic CAS on a V= View

. return TRUE;
shared variable. }

return FALSE;
}

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

A lock is a programming construct that allows only one process

to access a code section (called critical section) at each point in
time.

Mutual Exclusion: Only one process can hold the lock at any
given time.
Blocking: If a process attempts to acquire a lock that is already

held, it is typically blocked (i.e., paused) until the lock is
released.

No Deadlock: If some process has an active lock invocation at
some point, then there is a later point at which SOME process
has acquired the lock.

No starvation: |If some process has an active lock invocation at
some point, then there is a later point at which THAT SAME
process has acquired the lock.

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

* lock(L): is called for while (TRUE) {

acquiring the lock L. If L is lock(L)

already taken, the process critical section

blocks until lock is unlock(L)

released. reminder section
h

* unlock(L): releases L so
that other competing
processes can acquire it.

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

» Use base objects to store the state of
the)set (i.e., the state of the linked
list).

» Provide an algorithm for each process
to implement each of the operations of
the set.

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

* |n each execution a, each operation should
have the same response as if it has been
executed serially (or atomically) at some
point in its execution interval.

* This point is called of the
operation.

* Animplementation is linearizable if all the
executions it produces are linearizable.

uuuuuuuuuuu
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m SloRaan non

Wait-Freedom

» Each (non-faulty) process finishes the execution of its
operation within a finite number of steps.

Lock-freedom

» If all non-faulty process continue to take steps, SOME
process finishes the execution of its operation within a
finite number of steps.

Blocking Algorithm

» A process may have to wait/block until another process
takes some action.

uuuuuuuuuuu
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m SloRaan non

20
H pred \ curr T

l l

-00 —10 ‘ — 30 — +00

25‘

Concurrent insertions of nodes with keys 20 and 25
p1: Insert(20)
p2: Insert(25)

uuuuuuuuuuu
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m Cokann e

H 20‘ \ T
25‘

Concurrent insertions of nodes with keys 20 and 25
p1: Insert(20)
p2: Insert(25)

nnnnnnnnnnn
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m Cokann e

=00

—

zo\\

H
-00 —>1O ‘ 30 —_—| +00

25‘

Concurrent insertions of nodes with keys 20 and 25
p1: Insert(20)
p2: Insert(25)

nnnnnnnnnnn
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m Cokann e

—

zo\\

H
-00 —>1O ‘ 30 — +00

25‘

If we traverse the list starting from H, key 25 is not in the list.

uuuuuuuuuuu
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m e

p1: Insert(20) — TRUE p1: Search(25) — FALSE
*

v

%
p2: Insert(25) — TRUE

boolean search(int key) {
NODE *curr; boolean result;

0
A \ T 2. curr=H;
3. while (curr->key < key)
-0 | —10 ‘ 30| —— *x 4. curr = curr->next;
5. if (key == curr->key)
6. result = TRUE;
25 ‘ 7. else result = FALSE;

9. return result;

}

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

Can you come up with more bad scenarios? You
may consider the following cases:

1. An Insertion that is executed concurrently with
a Deletion

2. A Deletion that is executed concurrently with
another Deletion.

Can you come up with a bad scenario, assuming

that we use CAS (instead of Write) to update
pointers, using as old value the value of curr.

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

o]

w

Hl 1"|'.':'| J _____.Tl'.".||

Insertion of node with key 20 and concurrent deletion of node with key 30
in the list

il 3 ‘ 0] + \ Jﬂl(-- o 7]

Concurrent deletion of nodes with keys 10 and 30 from the list

Funded by the
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m Cokann e

1. Coarse-Grain Synchronization
2. Fine-grain Synchronization
3. Optimistic Synchronization

4. Lazy Synchronization

uuuuuuuuuuu
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m SloRaan non

Coarse-Grain Synchronization

G 2 Funded by the
reece European Union
NATIOMAL RECOVERY AND RESILIENCE PLAN

NextGenerationEU

Panagiota Fatourou Distributed Computing Mexico Summer School

boolean search(int key) { typedef struct node {

NODE *curr; boolean result; Int key;

1. lock(L): NODE *next;
2.curr=H; } NODE;

3. while (curr->key < key) _

4. curr = curr->next; sEareg II:ICZ)CISIE_,*H “T.
5. if (key == curr->key) share r
6. result = TRUE;

7. else result = FALSE;

8. unlock(L);

9. return result;

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

boolean insert(int key, T x) {
// code for process p

}

Panagiota Fatourou

Node *pred, *curr;
boolean result;

10. lock(L);

11. pred = H;

12. curr = pred->next;

13. while (curr->key < key) {

14. pred = curr;

15. curr = curr->next;

}

16. if (key == curr->key) result = FALSE;
17. else {

18. NODE *node = newcell(NODE);
19. node->next = curr;

20. node->key = key;

21. pred->next = node;

22. result = TRUE;

}

23. unlock(L);

24. return result;

boolean delete(int key) {
/[code for process p
Node *pred, *curr;
boolean result;

}

25.
26.
27.
28.
29.
30.

}

31.
32.
33.

}

34.
35.
36.

Distributed Computing Mexico Summer School

lock(L);

pred = H;

curr = pred->next;

while (curr->key < key) {
pred = curr;
curr = curr->next;

if (key == curr->key) {
pred->next = curr->next;
result = TRUE;

else result = FALSE;
unlock(L);
return result;

- S S S

* The algorithm is linearizable.

What do | have to do to prove it?

* Assign linearization points.

* Prove that linearization points are within
execution intervals of operations.

* Prove responses of operations are
consistent: operations in concurrent
execution have the same responses as
corresponding operations in sequential
execution defined by linearization points.

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

How shall we assign linearization
points to ops?
The linearization point for each operation can be

placed at any point at which the operation has
acquired the lock.

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

Consider the following assignment of
linearization points:

 Delete and Search are linearized as
described above.

* Insert is linearized when it returns (line 24).

* Present an execution that shows that this
assignment of lin points is not correct.

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

boolean insert(int key, T x) {
// code for process p

}

Panagiota Fatourou

Node *pred, *curr;
boolean result;

10. lock(L);

11. pred = H;

12. curr = pred->next;

13. while (curr->key < key) {

14. pred = curr;

15. curr = curr->next;

}

16. if (key == curr->key) result = FALSE;
17. else {

18. NODE *node = newcell(NODE);
19. node->next = curr;

20. node->key = key;

21. pred->next = node;

22. result = TRUE;

}

23. unlock(L);

24. return result;

boolean delete(int key) {
/[code for process p
Node *pred, *curr;
boolean result;

}

25.
26.
27.
28.
29.
30.

}

31.
32.
33.

}

34.
35.
36.

Distributed Computing Mexico Summer School

lock(L);

pred = H;

curr = pred->next;

while (curr->key < key) {
pred = curr;
curr = curr->next;

if (key == curr->key) {
pred->next = curr->next;
result = TRUE;

else result = FALSE;
unlock(L);
return result;

- S S S

p1:§: Insert(20) — TF;RUE

-00 — +00
*

A 4

% Initial state

p2: Sear%;h(ZO)
 What does p2 return in the concurrent execution above?

 What does it return in the sequential execution defined
by the linearization points? [[[Search(20), Insert(20)]]]

uuuuuuuuuuu
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m ok

Consider the following assignment of
linearization points:

 |nsert and Search are linearized as
described above.

 Delete is linearized when it is invoked
(before executing line 25).

* Present an execution to illustrate that this
assignment of lin points is not correct.

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

* The implementation satisfies the same progress
condition as the lock implementation it employs.

* |f contention is low, the performance of the
algorithm is ok.

* |f contention is high, the algorithm performs
poorly since parallelism is restricted.

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

Fine-Grain Synchronization

2 Funded by the
reece European Union
NATIOMAL RECOVERY AND RESILIENCE PLAN

NextGenerationEU

Panagiota Fatourou Distributed Computing Mexico Summer School

typedef struct node {
int key; Lock lock; NODE *next;
} NODE;

boolean search(int key) {
NODE *curr, *pred; boolean result;

lock(H->lock);

pred = H;

curr = pred->next;
lock(curr->lock);

while (curr->key < key) {

« Each node is associated
with its own lock.

* Locks are acquired in a
hand-over-hand manner.

— While holding the lock
of the node pointed to
by pred, acquire the
lock of the node
pointed to by curr, and

then release the lock of B e e
the node pointed to by ored = curr ’
pred. curr = curr->next:
— This is called hand- lock(curr->lock);
over-hand locking or }
lock coupling. if (key == curr->key) result = TRUE;
: else result = FALSE;
» To avoid deadlocks, the unlock(pred->lock); unlock(curr->lock);
locks should be acquired o

in the same order by each ,
process.
Panagiota Fatourou Distributed Computing Mexico Summer School Greece

boolean insert(int key) { // code for process p

}

Node *pred, *curr; boolean result;

lock(H->lock);

pred = H;

curr = pred->next;

lock(curr->lock);

while (curr->key < key) {
unlock(pred->lock);
pred = curr;
curr = curr->next;
lock(curr->lock);

}
if (key == curr->key) result = FALSE;
else {
NODE *node = newcell(NODE);
node->next = curr;
node->key = key;
pred->next = node;
result = TRUE;
}

unlock(pred->lock);
unlock(curr->lock);
return result;

Panagiota Fatourou

boolean delete(int key) {

}

// code for process p
Node *pred, *curr;
boolean result;

lock(head->lock);

pred = H;

curr = pred->next;

lock(curr->lock);

while (curr->key < key) {
unlock(pred->lock);
pred = curr;
curr = curr->next;
lock(curr->lock);

}

if (key == curr->key) {
pred->next = curr->next;
result = TRUE;

}

else result = FALSE;

unlock(pred->lock);

unlock(curr->lock);

retun, :
Funded b y the
Distributed Computing Mexico Summer School Greece 2.0 g ==

* Does this algorithm ensures a higher
degree of parallelism in comparison to
coarse-grain lock?

* Does it result in the best degree of
parallelism?

« Can you come up with a scenario that
parallelism is restricted?

* Does this algorithm results in best of
performance?

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

pred,g
H pred, curr,, pred,, CUITy, CUIT g

| | ll\ |

-0 [—10 ‘ —15 ‘ ——20 ‘—»25 ‘—»30‘ —— 4o

Consider the following operations:

* Insert(12)
* Insert(24)
* Insert(28)

Can they all proceed concurrently?

Does the fine-grain implementation allows to all these
operations to proceed concurrently?

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

Why hand-over-hand locking is required?
Why delete() must acquire two locks?
What might go wrong if we acquire just the
lock of Node pointed to by curr?

What might go wrong if we acquire just the
lock of Node pointed to by pred?

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

Linearizability

How shall we assign linearization points?

* A successful insert(k, x) is linearized when the
node with the next higher key is locked.

* An unsuccessful insert(k, x) is linearized when
the node with key k is locked.

« Similar rules apply for delete.

 Linearization points for search -> when the node
with key K (if any) or with the next higher key (if
not) is locked.

uuuuuuuuuuu
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m Cokann e

Progress
* |s the algorithm starvation-free?

* Yes, assuming that all individual locks are
starvation-free.

 |s deadlock possible?
* No

— If a process p attempts to lock head, it eventually
succeeds.

— Eventually, all locks held by other processes will be
released and p will manage to lock pred, and curr,.

uuuuuuuuuuu
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m Cokann e

Optimistic Synchronization

G 2 Funded by the
reece European Union
NATIOMAL RECOVERY AND RESILIENCE PLAN

NextGenerationEU

Panagiota Fatourou Distributed Computing Mexico Summer School

Main Ideas

 Search without taking into boolean search(int key) {
consideration locks NODE *curr; boolean result;
» Lock the found nodes (pred and
curr) while (TRUE) {
« Confirm that the locked nodes bred = H; curr = pred->next;
are correct. while (cgrr->key < key) { t
o red = curr; curr = curr->next;
— Use some form of validation. } g
boolean validate(NODE *pred, NODE *curr) lock(pred->lock); lock(curr->lock);
{ if (validate(pred, curr) == TRUE) {
NODE *tmp = H: if (key == curr->key) result = TRUE;
else result = FALSE;
while (tmp->key < pred->key) { return_flag = 1;
if (tmp == pred) { }
if (pred->next == curr) return TRUE: unlock(pred->lock); unlock(curr->lock);
else return FALSE: if (return_flag) return result;
} }
tmp = tmp->next; }

}
return FALSE;

Funded b y the
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m SloRaan non

boolean insert(int key, T x) { // code for process p
Node *pred, *curr;
boolean result;
boolean return_flag = 0;

while (TRUE) {
pred = head; curr = pred->next;
while (curr->key < key) {
pred = curr;
curr = curr->next;
}
lock(pred->lock); lock(curr->lock);
if (validate(pred, curr) == TRUE) {
if (key == curr->key) {
result = FALSE; return_flag = 1;
}
else {
NODE *node = newcell(NODE);
node->next = curr;
node->key = key;
pred->next = node;
result = TRUE; return_fl ag = 1;
}
}

unlock(pred->lock); unlock(curr->lock);
if return_flag) return result;

} Funded by the
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m B

boolean delete(int key) {

/l code for process p
Node *pred, *curr;
boolean result;

boolean return_flag = 0;

while (TRUE) {
pred = head; curr = pred->next;
while (curr->key < key) {
pred = curr;
curr = curr->next;
}
lock(pred->lock); lock(curr->lock);
if (validate(pred, curr)) {
if (key == curr->key) {
pred->next = curr->next;
result = TRUE;
}
else result = FALSE;
return_flag = 1;

}
unlock(pred->lock); unlock(curr->lock);
if (return_flag == 1) return result;

1}

M. Herlihy and N. Shavit, The Art of Multiprocessor Programming

pred,

head 7

\f

il

|

—> - —P 3

A

curr,

1. Is validation necessary?

2. Why? Can you come up with a scenario in which an
operation traverses nodes that have been deleted from the

list?

3. What will happen if a process follows the next fields of
deleted nodes? Will it eventually return to some node of

the list?

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

pred,g
H pred, curr,, pred,, CUITy, CUIT g

| | ll\ |

-0 [—10 ‘ —15 ‘ ——20 ‘—»25 ‘—»30‘ —— 4o

Consider the following operations:

* Insert(12)
* Insert(24)
* Insert(28)

Can they all proceed concurrently?

Does the optimistic implementation allows these
operations to proceed concurrently?

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

M. Herlihy and N. Shavit, The Art of Multiprocessor Programming

pred,

tail

How shall we assign linearization points?

Funded by the
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m Cokann e

What are the progress guarantees provided by the
algorithm?
* The algorithm is not starvation-free, even if all

nodes’ locks are starvation-free. Why? Bad
scenario where all processes starve?

 What do you have to say in terms of
performance?

* The implementation works well if the cost of
traversing the list twice without locking is
significantly less than the cost of traversing the
list once with locking.

uuuuuuuuuuu
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m Cokann e

Lazy Synchronization

G 2 Funded by the
reece European Union
NATIOMAL RECOVERY AND RESILIENCE PLAN

NextGenerationEU

Panagiota Fatourou Distributed Computing Mexico Summer School

Main Ideas boolean search(int key) {

We add in each node a NODE *curr;
boolean marked field which boolean result:
indicates whether this node is
in the set. _ _
curr = head;

Traversals do not lock and :
do not validate. while (curr->key < key)
Insert() locks the target’s ~ curr = curr->next,
predecessor and adds the new if (curr->marked !=TRUE
node. && key==curr->key)
Delete is realized in two steps: return TRUE:

— mark the node as deleted else return FALSE:

— physically remove the node)

boolean validate(NODE *pred, NODE *curr) {
if (pred->marked == FALSE &&
curr->marked === FALSE &&
pred->next == curr) return TRUE;
else return FALSE;

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

boolean insert(int key, T x) {
Node *pred, *curr;
boolean result;
boolean return_flag = 0;

/I code for process p

while (TRUE) {
pred = H; curr = pred->next;
while (curr->key < key) {
pred = curr;
curr = curr->next;
}
lock(pred->lock); lock(curr->lock);
if (validate(pred, curr) == TRUE) {
if (key == curr->key) {
result = FALSE; return_flag = 1;
}
else {
NODE *node = newcell(NODE);
node->next = curr;
node->key = key;
pred->next = node;
result = TRUE; return_flag = 1;
}
}

unlock(pred->lock); unlock(curr->lock);
if return_flag) return result;

}

Panagiota Fatourou

Funded by the
Distributed Computing Mexico Summer School -Greece m Cokann e

boolean delete(int key) {
// code for process p
Node *pred, *curr;
boolean result; boolean return_flag = 0O;

while (TRUE) {
pred = H; curr = pred->next;
while (curr->key < key) {
pred = curr;
curr = curr->next;
}
lock(pred->lock); lock(curr->lock);
if (validate(pred, curr)) {
if (key == curr->key) {
curr->marked = TRUE;
pred->next = curr->next;
result = TRUE;
}
else result = FALSE;
return_flag = 1;

}
unlock(pred->lock); unlock(curr->lock);
if (return_flag == 1) return result;

}

pred;s
H pred;; curr, pred,, CurT,, CUlfas T

| | I \ l

-0 [—10 ‘ —15 ‘ ——20 ‘—»25 ‘—»30‘ —— 4o

Consider the following operations:

* Insert(12)
* Insert(24)
* Insert(395)

Can they all proceed concurrently?

Does the lazy synchronization technique allows all of
these operations to proceed concurrently?

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

Progress?

* Insert() and Delete() are NOT starvation-free
since list traversals may be arbitrarily delayed by
ongoing modifications.

« Can you come up with a scenario where a
process starves?

uuuuuuuuuuu
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m Cokann e

Linearization Points

* Insert()?

— Successful: when pred->next changes to point to node.

— Unsuccessful: at the point that it acquires the lock to
curr for the last time.

* Delete()?

— Successful: when the mark is set.

— Unsuccessful: at the point that it acquires the lock to
curr for the last time.

« Search()?

— Successful: when an unmarked matching node is
found.

— Unsuccessful: Can we linearize an unsuccessful
search when it detects that the node it is looking for is

marked?

Panagiota Fatourou Distributed Computing Mexico Summer School -(-:’reece m SloRaan non

uuuuuuuuuuu

(@)

M. Herlihy and N. Shavit, The Art of
Multiprocessor Programming

(b)

tail

CUrra

An unsuccessful search() is linearized at the earlier of the following points:

1. the point where a removed matching node, or a node with key greater
than the one being searched is found, and

2. the point immediately before a new matching node is inserted to the
list.

Funded by the
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m Rt

These slides are based on material that
appears in the following book:

* M. Herlihy and N. Shavit, The Art of

Multiprocessor Programming, Morgan
Kauffman, 2008

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

Funded by the
reece European Union
NATIOMAL RECOVERY AND RESILIENCE PLAN NextGenerationEU

Panagiota Fatourou Distributed Computing Mexico Summer School

* Alock-free implementation of BSTs from
single-word CAS.

Properties
— Conceptually simple
— Allows for fast searches

— Concurrent updates to different parts of the
tree do not conflict

— Experiments show good performance

nnnnnnnnnnn
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m SloRaan non

A
Properties /(\

* One leaf for each key in set B @

* Internal nodes used for / \
routing - -

* The tree is full

* BST Property

Why Leaf-Oriented BSTs?

 Deletions are simpler.
» Average depth is only slightly higher.

uuuuuuuuuuu
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m Cokann e

Leaf-Oriented BST storing
key set {A,B,C,F}

Insert(D)

Panagiota Fatourou

Search for D
Remember leaf and its parent

Create new leaf, replacement
leaf and one internal node

Update pointer

s

—7 \

N\

@

(o)

C

— | F

VAN

C

D

Distributed Computing Mexico Summer School -Greece B

ddddddddddd
European Union

Delete(C)

« Search for C A

 Remember leaf, its parent and \
grandparent 8| —(e)

« Update pointer N é/ \F

uuuuuuuuuuu
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m Cokann e

\
e
VRN

C D

F

Concurrently, Delete(C) and Insert(D)
® D is not reachable from the root!

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m SloRaan non

O\

F

Concurrent Deletion of B and C
®» C is still reachable from the root!

Problem

®» A node’s child pointer is changed while the node is being
removed from the tree!

Panagiota Fatourou

Distributed Computing Mexico Summer School -G’e‘*‘:e |

uuuuuuuuuu

* Flags and marks internal nodes during updates.

* Flag: indicates that an update is changing a
child pointer

— Flag an internal node x before changing a child
pointer of it

— Once the update has been performed, unflag x

 Mark: indicates that an internal node has be or
soon will be removed from the tree
— Mark an internal node x before removing it
— Node remains marked forever

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

Insert(D)
e Search for D "
e Remember leaf and its /<

parent 5 \@E

* Create three new nodes / \

» Flag parent (if this fails, step (o) [e]— [*
back and retry) /N

» Update pointer (using CAS) © D

« Unflag parent

nnnnnnnnnnn
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece H b

Delete(C)

Panagiota Fatourou

Search for C

Remember leaf, its parent and
grandparent

Flag grandparent (if this fails, step
back and retry)

Mark parent (if this fails, unflag
grandparent, step back, and retry)

Update pointer
Unflag grandparent

r
N\

~(E)

/

C

&

N\

Distributed Computing Mexico Summer School -Greece B

ddddddddddd
European Union

Concurrently, Delete(C) and Insert(D)
Case 1: Delete(C)’ s flag and mark succeeds

A ﬁr
» Delete(C) will complete ‘_1

®» Insert(D)’ s flag fails B @\/F)
» Insert(D) will step back and retry / \
Case 2: Insert(D)’ s flag succeeds C F

®» Insert(D) will complete

» Delete(C)’ s mark fails
* Delete(C) will step back and retry

Panagiota Fatourou Distributed Computing Mexico Summer School

Concurrent Deletion of B and C

Case 1: Delete(B)’s flag and mark succeeds

» Delete(B) will complete
» Delete(C)’s flag fails
» Delete(C) has to step back and retry

Case 2: Delete(C)’s flag succeeds

» Delete(C) will complete
» Delete(B)'s mark fails
* Delete(B) has to step back and retry

uuuuuuuuuuu
Panagiota Fatourou Distributed Computing Mexico Summer School -Greece m Cokann e

* Whenever flagging or marking, leave a key
under the doormat.

— A flag or mark points to a small record that tells
a thread how to help the original operation.

Info object

* |f an operation fails to flag Ineert(e)
or mark, it helps the previous 4 _
operation complete before (&) 4
retrying. \ ireertt®

B

A

Panagiota Fatourou Distributed Computing Mexico Summer School -Greece

« Searches just traverse a path of the
BST until reaching a leaf.

* They ignore flags and marks.

» Algorithm for Find is similar to its
sequential version

™ 7 B Funded by the
Panagiota Fatourou Distributed Computing Mexico Summer School -(-:’reece m SloRaan non

https://persist-project.qr/

https://harsh-project.gr/

Current Projects
| am looking for promising young researchers to recruit!

faturu@csd.uoc.qgr
www.ics.forth.gr/~faturu/

Greece 2 “ Eu,:::a:’u':..,n

nnnnnnnnnnnnnnnnnn

mailto:faturu@csd.uoc.gr
mailto:faturu@csd.uoc.gr
mailto:faturu@csd.uoc.gr
http://www.ics.forth.gr/~faturu/

