
Concurrent Data Structures and

Robust Shared Memory Building

Blocks

Philipp Woelfel & Panagiota (Youla) Fatourou
University of Crete, Department of Computer Science

Foundation for Research and Technology - Hellas

Distributed Computing Mexico Summer School

June 2025, Huatulco, Mexico

Set
• A set stores unique keys and supports the

following operations:

– insert(int key): inserts key to the set (if key not already

in set); returns FALSE if key already in the set and

TRUE otherwise

– delete(int key): deletes key from the set (if key is in the

set); returns FALSE if key is not in the set and TRUE

otherwise

– search(int key): searches for key and returns TRUE if

it is in the set and FALSE otherwise.

• An operation is called successful if it returns

TRUE and unsuccessful if it returns FALSE.

Panagiota Fatourou Distributed Computing Mexico Summer School

Dynamic List to Implement a Set

224 232 222 000

P

228

Lewis & Denenberg, Data Structures & Their Algorithms

• Each node has two fields:

• key: integer

• next: pointer to next node of the list.

10 20 30 40
10

20

30

40
H

H

Panagiota Fatourou Distributed Computing Mexico Summer School

Sorted Linked List

with Sentinel Nodes

➢ The list contains regular nodes and two sentinel nodes,
called Head (H) and Tail (T), that point to the first and
last element of the list, respectively.

➢ Sentinel nodes are initially in the list and are never
deleted; the key of node pointed to by H is MININT (- )
and the key of node pointed to by T is MAXINT (+ ).

➢ H and T never change.

H T

- +10 30

H T

- +

Initial state Nodes with keys 10 and 30 are regular

Panagiota Fatourou Distributed Computing Mexico Summer School

Sequential Search

boolean search(int key) {

NODE *curr; boolean result;

2. curr = H;

3. while (curr->key < key)

4. curr = curr->next;

5. if (key == curr->key)

6. result = TRUE;

7. else result = FALSE;

9. return result;

}

H T

- +10 30

Search(20)

Panagiota Fatourou Distributed Computing Mexico Summer School

Sequential Search

boolean search(int key) {

NODE *curr; boolean result;

2. curr = H;

3. while (curr->key < key)

4. curr = curr->next;

5. if (key == curr->key)

6. result = TRUE;

7. else result = FALSE;

9. return result;

}

H Tcurr

- +10 30

Search(20)

Panagiota Fatourou Distributed Computing Mexico Summer School

Sequential Search

boolean search(int key) {

NODE *curr; boolean result;

2. curr = H;

3. while (curr->key < key)

4. curr = curr->next;

5. if (key == curr->key)

6. result = TRUE;

7. else result = FALSE;

9. return result;

}

H Tcurr

- +10 30

Search(20)

Panagiota Fatourou Distributed Computing Mexico Summer School

Sequential Search

boolean search(int key) {

NODE *curr; boolean result;

2. curr = H;

3. while (curr->key < key)

4. curr = curr->next;

5. if (key == curr->key)

6. result = TRUE;

7. else result = FALSE;

9. return result;

}

H T
curr

- +10 30

Search(20)

Panagiota Fatourou Distributed Computing Mexico Summer School

Sequential Search

boolean search(int key) {

NODE *curr; boolean result;

2. curr = H;

3. while (curr->key < key)

4. curr = curr->next;

5. if (key == curr->key)

6. result = TRUE;

7. else result = FALSE;

9. return result;

}

H T
curr

- +10 30

Search(20)

Panagiota Fatourou Distributed Computing Mexico Summer School

Sequential Search

boolean search(int key) {

NODE *curr; boolean result;

2. curr = H;

3. while (curr->key < key)

4. curr = curr->next;

5. if (key == curr->key)

6. result = TRUE;

7. else result = FALSE;

9. return result;

}

H T
curr

- +10 30

Search(20) FALSE

Panagiota Fatourou Distributed Computing Mexico Summer School

Sequential Insert
boolean insert(int key, T x) {

// code for process p

Node *pred, *curr;

boolean result;

11. pred = H;

12. curr = pred->next;

13. while (curr->key < key) {

14. pred = curr;

15. curr = curr->next;

}

16. if (key == curr->key)

result = FALSE;

17. else {

18. NODE *node = newcell(NODE);

19. node->next = curr;

20. node->key = key;

21. pred->next = node;

22. result = TRUE;

}

24. return result;

}

H T
curr

- +10 30

pred

Insert(20)

Panagiota Fatourou Distributed Computing Mexico Summer School

boolean insert(int key, T x) {
// code for process p

Node *pred, *curr;
boolean result;

11. pred = H;
12. curr = pred->next;
13. while (curr->key < key) {
14. pred = curr;
15. curr = curr->next;
}
16. if (key == curr->key)

result = FALSE;
17. else {
18. NODE *node = newcell(NODE);
19. node->next = curr;
20. node->key = key;
21. pred->next = node;
22. result = TRUE;
}

24. return result;
}

H T
curr

- +10 30

pred

node

Insert(20)

Sequential Insert

Panagiota Fatourou Distributed Computing Mexico Summer School

boolean insert(int key, T x) {
// code for process p

Node *pred, *curr;
boolean result;

11. pred = H;
12. curr = pred->next;
13. while (curr->key < key) {
14. pred = curr;
15. curr = curr->next;
}
16. if (key == curr->key)

result = FALSE;
17. else {
18. NODE *node = newcell(NODE);
19. node->next = curr;
20. node->key = key;
21. pred->next = node;
22. result = TRUE;
}

24. return result;
}

H T
curr

- +10 30

pred

node

Insert(20)

20

Sequential Insert

Panagiota Fatourou Distributed Computing Mexico Summer School

boolean insert(int key, T x) {
// code for process p

Node *pred, *curr;
boolean result;

11. pred = H;
12. curr = pred->next;
13. while (curr->key < key) {
14. pred = curr;
15. curr = curr->next;
}
16. if (key == curr->key)

result = FALSE;
17. else {
18. NODE *node = newcell(NODE);
19. node->next = curr;
20. node->key = key;
21. pred->next = node;
22. result = TRUE;
}

24. return result;
}

H T
curr

- +10 30

pred

node

Insert(20)

20

Sequential Insert

Panagiota Fatourou Distributed Computing Mexico Summer School

H T
curr

- +10 30

pred

node

20

Insert(20) TRUE

boolean insert(int key, T x) {
// code for process p

Node *pred, *curr;
boolean result;

11. pred = H;
12. curr = pred->next;
13. while (curr->key < key) {
14. pred = curr;
15. curr = curr->next;
}
16. if (key == curr->key)

result = FALSE;
17. else {
18. NODE *node = newcell(NODE);
19. node->next = curr;
20. node->key = key;
21. pred->next = node;
22. result = TRUE;
}

24. return result;
}

Sequential Insert

Panagiota Fatourou Distributed Computing Mexico Summer School

boolean delete(int key) {
// code for process p
Node *pred, *curr;
boolean result;

26. pred = H;
27. curr = pred->next;
28. while (curr->key < key) {
29. pred = curr;
30. curr = curr->next;
}

31. if (key == curr->key) {
32. pred->next = curr->next;
33. result = TRUE;
}

34. else result = FALSE;

36. return result;
}

H T
curr

- +10 30

pred

Sequential Delete

Delete(30)

Panagiota Fatourou Distributed Computing Mexico Summer School

boolean delete(int key) {
// code for process p
Node *pred, *curr;
boolean result;

26. pred = H;
27. curr = pred->next;
28. while (curr->key < key) {
29. pred = curr;
30. curr = curr->next;
}

31. if (key == curr->key) {
32. pred->next = curr->next;
33. result = TRUE;
}

34. else result = FALSE;

36. return result;
}

H T
curr

- +10 30

pred

Delete(30)

Sequential Delete

Panagiota Fatourou Distributed Computing Mexico Summer School

boolean delete(int key) {
// code for process p
Node *pred, *curr;
boolean result;

26. pred = H;
27. curr = pred->next;
28. while (curr->key < key) {
29. pred = curr;
30. curr = curr->next;
}

31. if (key == curr->key) {
32. pred->next = curr->next;
33. result = TRUE;
}

34. else result = FALSE;

36. return result;
}

H T
curr

- +10 30

pred

Delete(30) TRUE

Sequential Delete

Panagiota Fatourou Distributed Computing Mexico Summer School

Homework
1. Draw a linked list with >6 regular nodes.

2. Trace the execution of a successful and an

unsuccessful Search operation.

3. Trace the execution of two successful Insert

operations.

4. Trace the execution of two successful Delete

operations.

5. Trace the execution of an unsuccessful Insert

and an unsuccessful Delete operation.

6. Draw (abstract and more detailed) figures to

illustrate the traces.

Panagiota Fatourou Distributed Computing Mexico Summer School

Concurrent Setting

Panagiota Fatourou Distributed Computing Mexico Summer School

Model
Process

1
Process

2
Process

n
…

shared variables

ATOMIC boolean CAS(Variable V, Value vold,
Value vnew) {

if (V == vold) {
V = vnew;
return TRUE;

}
return FALSE;

}

▪ The system is
asynchronous.

▪ Processes
communicate by
accessing shared
variables (base
objects).

▪ In addition to atomic
Read and Write, a
process may execute
an atomic CAS on a
shared variable.

Panagiota Fatourou Distributed Computing Mexico Summer School

Locks

A lock is a programming construct that allows only one process

to access a code section (called critical section) at each point in

time.

Mutual Exclusion: Only one process can hold the lock at any

given time.

Blocking: If a process attempts to acquire a lock that is already

held, it is typically blocked (i.e., paused) until the lock is

released.

No Deadlock: If some process has an active lock invocation at

some point, then there is a later point at which SOME process

has acquired the lock.

No starvation: If some process has an active lock invocation at

some point, then there is a later point at which THAT SAME

process has acquired the lock.

Panagiota Fatourou Distributed Computing Mexico Summer School

Interface of Locks

• lock(L): is called for

acquiring the lock L. If L is

already taken, the process

blocks until lock is

released.

• unlock(L): releases L so

that other competing

processes can acquire it.

while (TRUE) {

lock(L)

critical section

unlock(L)

reminder section

}

Panagiota Fatourou Distributed Computing Mexico Summer School

Implementation of Sets

➢Use base objects to store the state of
the set (i.e., the state of the linked
list).

➢Provide an algorithm for each process
to implement each of the operations of
the set.

Panagiota Fatourou Distributed Computing Mexico Summer School

Linearizability

• In each execution α, each operation should
have the same response as if it has been
executed serially (or atomically) at some
point in its execution interval.

• This point is called linearization point of the
operation.

• An implementation is linearizable if all the
executions it produces are linearizable.

Panagiota Fatourou Distributed Computing Mexico Summer School

Progress

Wait-Freedom
➢ Each (non-faulty) process finishes the execution of its

operation within a finite number of steps.

Lock-freedom
➢ If all non-faulty process continue to take steps, SOME

process finishes the execution of its operation within a
finite number of steps.

Blocking Algorithm
➢ A process may have to wait/block until another process

takes some action.

Panagiota Fatourou Distributed Computing Mexico Summer School

Synchronization Problems

when Updating Shared Lists

H T

- +10 30

25

20

Concurrent insertions of nodes with keys 20 and 25

p1: Insert(20)

p2: Insert(25)

currpred

Panagiota Fatourou Distributed Computing Mexico Summer School

Synchronization Problems

when Updating Shared Lists

H T

- +10 30

25

20

Concurrent insertions of nodes with keys 20 and 25

p1: Insert(20)

p2: Insert(25)

Panagiota Fatourou Distributed Computing Mexico Summer School

Synchronization Problems

when Updating Shared Lists

H T

- +10 30

25

20

Concurrent insertions of nodes with keys 20 and 25

p1: Insert(20)

p2: Insert(25)

Panagiota Fatourou Distributed Computing Mexico Summer School

Synchronization Problems

when Updating Shared Lists

H T

- +10 30

25

20

If we traverse the list starting from H, key 25 is not in the list.

Panagiota Fatourou Distributed Computing Mexico Summer School

Why is this a problem?

boolean search(int key) {

NODE *curr; boolean result;

2. curr = H;

3. while (curr->key < key)

4. curr = curr->next;

5. if (key == curr->key)

6. result = TRUE;

7. else result = FALSE;

9. return result;

}

H T

- +10 30

25

20

*
*

p1: Insert(20) → TRUE

p2: Insert(25) → TRUE

p1: Search(25) → FALSE

Panagiota Fatourou Distributed Computing Mexico Summer School

Assignment 1

Can you come up with more bad scenarios? You

may consider the following cases:

1. An Insertion that is executed concurrently with

a Deletion

2. A Deletion that is executed concurrently with

another Deletion.

Can you come up with a bad scenario, assuming

that we use CAS (instead of Write) to update

pointers, using as old value the value of curr.

Panagiota Fatourou Distributed Computing Mexico Summer School

Synchronization Problems

when Updating Shared Lists

Insertion of node with key 20 and concurrent deletion of node with key 30

in the list

Concurrent deletion of nodes with keys 10 and 30 from the list

Panagiota Fatourou Distributed Computing Mexico Summer School

Lock-Based Approaches for

Implementing

Concurrent Data Structures

1. Coarse-Grain Synchronization

2. Fine-grain Synchronization

3. Optimistic Synchronization

4. Lazy Synchronization

Panagiota Fatourou Distributed Computing Mexico Summer School

Coarse-Grain Synchronization

Panagiota Fatourou Distributed Computing Mexico Summer School

typedef struct node {

int key;

NODE *next;

} NODE;

shared Lock L;

shared NODE *H, *T;

boolean search(int key) {

NODE *curr; boolean result;

1. lock(L);

2. curr = H;

3. while (curr->key < key)

4. curr = curr->next;

5. if (key == curr->key)

6. result = TRUE;

7. else result = FALSE;

8. unlock(L);

9. return result;

}

Linked Lists: Coarse-Grain Synchronization

Panagiota Fatourou Distributed Computing Mexico Summer School

Linked Lists: Coarse-Grain Synchronization

boolean insert(int key, T x) {

// code for process p

Node *pred, *curr;

boolean result;

10. lock(L);

11. pred = H;

12. curr = pred->next;

13. while (curr->key < key) {

14. pred = curr;

15. curr = curr->next;

}

16. if (key == curr->key) result = FALSE;

17. else {

18. NODE *node = newcell(NODE);

19. node->next = curr;

20. node->key = key;

21. pred->next = node;

22. result = TRUE;

}

23. unlock(L);

24. return result;

}

boolean delete(int key) {

// code for process p

Node *pred, *curr;

boolean result;

25. lock(L);

26. pred = H;

27. curr = pred->next;

28. while (curr->key < key) {

29. pred = curr;

30. curr = curr->next;

}

31. if (key == curr->key) {

32. pred->next = curr->next;

33. result = TRUE;

}

34. else result = FALSE;

35. unlock(L);

36. return result;

}

Panagiota Fatourou Distributed Computing Mexico Summer School

Coarse-Grain Synchronization -

Linearizability

• The algorithm is linearizable.

What do I have to do to prove it?

• Assign linearization points.

• Prove that linearization points are within

execution intervals of operations.

• Prove responses of operations are

consistent: operations in concurrent

execution have the same responses as

corresponding operations in sequential

execution defined by linearization points.

Panagiota Fatourou Distributed Computing Mexico Summer School

Coarse-Grain Synchronization -

Linearizability

How shall we assign linearization

points to ops?

The linearization point for each operation can be

placed at any point at which the operation has

acquired the lock.

Panagiota Fatourou Distributed Computing Mexico Summer School

Assignment 2

Consider the following assignment of

linearization points:

• Delete and Search are linearized as

described above.

• Insert is linearized when it returns (line 24).

• Present an execution that shows that this

assignment of lin points is not correct.

Panagiota Fatourou Distributed Computing Mexico Summer School

Linked Lists: Coarse-Grain Synchronization

boolean insert(int key, T x) {

// code for process p

Node *pred, *curr;

boolean result;

10. lock(L);

11. pred = H;

12. curr = pred->next;

13. while (curr->key < key) {

14. pred = curr;

15. curr = curr->next;

}

16. if (key == curr->key) result = FALSE;

17. else {

18. NODE *node = newcell(NODE);

19. node->next = curr;

20. node->key = key;

21. pred->next = node;

22. result = TRUE;

}

23. unlock(L);

24. return result;

}

boolean delete(int key) {

// code for process p

Node *pred, *curr;

boolean result;

25. lock(L);

26. pred = H;

27. curr = pred->next;

28. while (curr->key < key) {

29. pred = curr;

30. curr = curr->next;

}

31. if (key == curr->key) {

32. pred->next = curr->next;

33. result = TRUE;

}

34. else result = FALSE;

35. unlock(L);

36. return result;

}

Panagiota Fatourou Distributed Computing Mexico Summer School

Execution to illustrate Wrong

Assignment of Lin Points

*
*

p1: Insert(20) → TRUE

H T

- +

Initial state

p2: Search(20)

• What does p2 return in the concurrent execution above?

• What does it return in the sequential execution defined

by the linearization points? [[[Search(20), Insert(20)]]]

Panagiota Fatourou Distributed Computing Mexico Summer School

Assignment 3

Consider the following assignment of

linearization points:

• Insert and Search are linearized as

described above.

• Delete is linearized when it is invoked

(before executing line 25).

• Present an execution to illustrate that this

assignment of lin points is not correct.

Panagiota Fatourou Distributed Computing Mexico Summer School

Properties

• The implementation satisfies the same progress

condition as the lock implementation it employs.

• If contention is low, the performance of the

algorithm is ok.

• If contention is high, the algorithm performs

poorly since parallelism is restricted.

Panagiota Fatourou Distributed Computing Mexico Summer School

Fine-Grain Synchronization

Panagiota Fatourou Distributed Computing Mexico Summer School

Linked Lists: Fine-Grain Synchronization

• Each node is associated
with its own lock.

• Locks are acquired in a
hand-over-hand manner.

– While holding the lock
of the node pointed to
by pred, acquire the
lock of the node
pointed to by curr, and
then release the lock of
the node pointed to by
pred.

– This is called hand-
over-hand locking or
lock coupling.

• To avoid deadlocks, the
locks should be acquired
in the same order by each
process.

typedef struct node {

int key; Lock lock; NODE *next;

} NODE;

boolean search(int key) {

NODE *curr, *pred; boolean result;

lock(H->lock);

pred = H;

curr = pred->next;

lock(curr->lock);

while (curr->key < key) {

unlock(pred->lock);

pred = curr;

curr = curr->next;

lock(curr->lock);

}

if (key == curr->key) result = TRUE;

else result = FALSE;

unlock(pred->lock); unlock(curr->lock);

return result;

}

Panagiota Fatourou Distributed Computing Mexico Summer School

Linked Lists: Fine-Grain Synchronization
boolean insert(int key) { // code for process p

Node *pred, *curr; boolean result;

lock(H->lock);

pred = H;

curr = pred->next;

lock(curr->lock);

while (curr->key < key) {

unlock(pred->lock);

pred = curr;

curr = curr->next;

lock(curr->lock);

}

if (key == curr->key) result = FALSE;

else {

NODE *node = newcell(NODE);

node->next = curr;

node->key = key;

pred->next = node;

result = TRUE;

}

unlock(pred->lock);

unlock(curr->lock);

return result;

}

boolean delete(int key) {

// code for process p

Node *pred, *curr;

boolean result;

lock(head->lock);

pred = H;

curr = pred->next;

lock(curr->lock);

while (curr->key < key) {

unlock(pred->lock);

pred = curr;

curr = curr->next;

lock(curr->lock);

}

if (key == curr->key) {

pred->next = curr->next;

result = TRUE;

}

else result = FALSE;

unlock(pred->lock);

unlock(curr->lock);

return result;

}
Panagiota Fatourou Distributed Computing Mexico Summer School

Assignment 3

• Does this algorithm ensures a higher

degree of parallelism in comparison to

coarse-grain lock?

• Does it result in the best degree of

parallelism?

• Can you come up with a scenario that

parallelism is restricted?

• Does this algorithm results in best of

performance?

Panagiota Fatourou Distributed Computing Mexico Summer School

Assignment
H T

- +10 3015 20 25

Consider the following operations:

• Insert(12)

• Insert(24)

• Insert(28)

Can they all proceed concurrently?

Does the fine-grain implementation allows to all these

operations to proceed concurrently?

pred12 curr12 pred24
curr24

pred28

curr28

Panagiota Fatourou Distributed Computing Mexico Summer School

Assignment

Why hand-over-hand locking is required?

Why delete() must acquire two locks?

What might go wrong if we acquire just the

lock of Node pointed to by curr?

What might go wrong if we acquire just the

lock of Node pointed to by pred?

Panagiota Fatourou Distributed Computing Mexico Summer School

Fine Grain Synchronization

Linearizability

How shall we assign linearization points?

• A successful insert(k, x) is linearized when the
node with the next higher key is locked.

• An unsuccessful insert(k, x) is linearized when
the node with key k is locked.

• Similar rules apply for delete.

• Linearization points for search -> when the node
with key k (if any) or with the next higher key (if
not) is locked.

Panagiota Fatourou Distributed Computing Mexico Summer School

Fine-Grain Synchronization - Questions

Progress

• Is the algorithm starvation-free?

• Yes, assuming that all individual locks are
starvation-free.

• Is deadlock possible?

• No
– If a process p attempts to lock head, it eventually

succeeds.

– Eventually, all locks held by other processes will be
released and p will manage to lock predp and currp.

Panagiota Fatourou Distributed Computing Mexico Summer School

Optimistic Synchronization

Panagiota Fatourou Distributed Computing Mexico Summer School

boolean search(int key) {

NODE *curr; boolean result;

while (TRUE) {

pred = H; curr = pred->next;

while (curr->key < key) {

pred = curr; curr = curr->next;

}

lock(pred->lock); lock(curr->lock);

if (validate(pred, curr) == TRUE) {

if (key == curr->key) result = TRUE;

else result = FALSE;

return_flag = 1;

}

unlock(pred->lock); unlock(curr->lock);

if (return_flag) return result;

}

}

Linked Lists – Optimistic Synchronization

Main Ideas

• Search without taking into
consideration locks

• Lock the found nodes (pred and
curr)

• Confirm that the locked nodes
are correct.
– Use some form of validation.

boolean validate(NODE *pred, NODE *curr)

{

NODE *tmp = H;

while (tmp->key ≤ pred->key) {

if (tmp == pred) {

if (pred->next == curr) return TRUE;

else return FALSE;

}

tmp = tmp->next;

}

return FALSE;

}

Panagiota Fatourou Distributed Computing Mexico Summer School

Linked Lists – Optimistic Synchronization
boolean insert(int key, T x) { // code for process p

Node *pred, *curr;

boolean result;

boolean return_flag = 0;

while (TRUE) {

pred = head; curr = pred->next;

while (curr->key < key) {

pred = curr;

curr = curr->next;

}

lock(pred->lock); lock(curr->lock);

if (validate(pred, curr) == TRUE) {

if (key == curr->key) {

result = FALSE; return_flag = 1;

}

else {

NODE *node = newcell(NODE);

node->next = curr;

node->key = key;

pred->next = node;

result = TRUE; return_fl ag = 1;

}

}

unlock(pred->lock); unlock(curr->lock);

if return_flag) return result;

}

}

boolean delete(int key) {

// code for process p

Node *pred, *curr;

boolean result;

boolean return_flag = 0;

while (TRUE) {

pred = head; curr = pred->next;

while (curr->key < key) {

pred = curr;

curr = curr->next;

}

lock(pred->lock); lock(curr->lock);

if (validate(pred, curr)) {

if (key == curr->key) {

pred->next = curr->next;

result = TRUE;

}

else result = FALSE;

return_flag = 1;

}

unlock(pred->lock); unlock(curr->lock);

if (return_flag == 1) return result;

} }

Panagiota Fatourou Distributed Computing Mexico Summer School

Linked Lists – Optimistic Synchronization

Assignment

1. Is validation necessary?

2. Why? Can you come up with a scenario in which an
operation traverses nodes that have been deleted from the
list?

3. What will happen if a process follows the next fields of
deleted nodes? Will it eventually return to some node of
the list?

M. Herlihy and N. Shavit, The Art of Multiprocessor Programming

Panagiota Fatourou Distributed Computing Mexico Summer School

Assignment
H T

- +10 3015 20 25

Consider the following operations:

• Insert(12)

• Insert(24)

• Insert(28)

Can they all proceed concurrently?

Does the optimistic implementation allows these

operations to proceed concurrently?

pred12 curr12 pred24
curr24

pred28

curr28

Panagiota Fatourou Distributed Computing Mexico Summer School

Optimistic Synchronization

Discussion Point

How shall we assign linearization points?

M. Herlihy and N. Shavit, The Art of Multiprocessor Programming

Panagiota Fatourou Distributed Computing Mexico Summer School

Optimistic Synchronization

Some properties
What are the progress guarantees provided by the
algorithm?

• The algorithm is not starvation-free, even if all
nodes’ locks are starvation-free. Why? Bad
scenario where all processes starve?

• What do you have to say in terms of
performance?

• The implementation works well if the cost of
traversing the list twice without locking is
significantly less than the cost of traversing the
list once with locking.

Panagiota Fatourou Distributed Computing Mexico Summer School

Lazy Synchronization

Panagiota Fatourou Distributed Computing Mexico Summer School

Linked Lists – Lazy Synchronization

Main Ideas

• We add in each node a
boolean marked field which
indicates whether this node is
in the set.

• Traversals do not lock and
do not validate.

• Insert() locks the target’s
predecessor and adds the new
node.

• Delete is realized in two steps:
– mark the node as deleted

– physically remove the node

boolean search(int key) {

NODE *curr;

boolean result;

curr = head;

while (curr->key < key)

curr = curr->next;

if (curr->marked !=TRUE

&& key==curr->key)

return TRUE;

else return FALSE;

}

boolean validate(NODE *pred, NODE *curr) {

if (pred->marked == FALSE &&

curr->marked === FALSE &&

pred->next == curr) return TRUE;

else return FALSE;

}

Panagiota Fatourou Distributed Computing Mexico Summer School

Linked Lists – Lazy Synchronization
boolean insert(int key, T x) { // code for process p

Node *pred, *curr;

boolean result;

boolean return_flag = 0;

while (TRUE) {

pred = H; curr = pred->next;

while (curr->key < key) {

pred = curr;

curr = curr->next;

}

lock(pred->lock); lock(curr->lock);

if (validate(pred, curr) == TRUE) {

if (key == curr->key) {

result = FALSE; return_flag = 1;

}

else {

NODE *node = newcell(NODE);

node->next = curr;

node->key = key;

pred->next = node;

result = TRUE; return_flag = 1;

}

}

unlock(pred->lock); unlock(curr->lock);

if return_flag) return result;

}

}

boolean delete(int key) {

// code for process p

Node *pred, *curr;

boolean result; boolean return_flag = 0;

while (TRUE) {

pred = H; curr = pred->next;

while (curr->key < key) {

pred = curr;

curr = curr->next;

}

lock(pred->lock); lock(curr->lock);

if (validate(pred, curr)) {

if (key == curr->key) {

curr->marked = TRUE;

pred->next = curr->next;

result = TRUE;

}

else result = FALSE;

return_flag = 1;

}

unlock(pred->lock); unlock(curr->lock);

if (return_flag == 1) return result;

}

}

Panagiota Fatourou Distributed Computing Mexico Summer School

Assignment
H T

- +10 3015 20 25

Consider the following operations:

• Insert(12)

• Insert(24)

• Insert(35)

Can they all proceed concurrently?

Does the lazy synchronization technique allows all of

these operations to proceed concurrently?

pred12 curr12 pred24
curr24

pred35

curr35

Panagiota Fatourou Distributed Computing Mexico Summer School

Linked Lists – Lazy Synchronization

Progress?

• Insert() and Delete() are NOT starvation-free
since list traversals may be arbitrarily delayed by
ongoing modifications.

• Can you come up with a scenario where a
process starves?

Panagiota Fatourou Distributed Computing Mexico Summer School

Linked Lists – Lazy Synchronization

Linearization Points

• Insert()?
– Successful: when pred->next changes to point to node.

– Unsuccessful: at the point that it acquires the lock to
curr for the last time.

• Delete()?
– Successful: when the mark is set.

– Unsuccessful: at the point that it acquires the lock to
curr for the last time.

• Search()?
– Successful: when an unmarked matching node is

found.

– Unsuccessful: Can we linearize an unsuccessful
search when it detects that the node it is looking for is
marked?

Panagiota Fatourou Distributed Computing Mexico Summer School

Linked Lists – Lazy Synchronization

An unsuccessful search() is linearized at the earlier of the following points:

1. the point where a removed matching node, or a node with key greater

than the one being searched is found, and

2. the point immediately before a new matching node is inserted to the

list.

M. Herlihy and N. Shavit, The Art of

Multiprocessor Programming

Panagiota Fatourou Distributed Computing Mexico Summer School

Bibliography

These slides are based on material that

appears in the following book:

• M. Herlihy and N. Shavit, The Art of

Multiprocessor Programming, Morgan

Kauffman, 2008

Panagiota Fatourou Distributed Computing Mexico Summer School

Concurrent Tree-

Based Dictionaries

Panagiota Fatourou Distributed Computing Mexico Summer School

Efficient Concurrent Implementations of

Binary-Search Trees

• A lock-free implementation of BSTs from
single-word CAS.

Properties

– Conceptually simple

– Allows for fast searches

– Concurrent updates to different parts of the
tree do not conflict

– Experiments show good performance

Panagiota Fatourou Distributed Computing Mexico Summer School

Leaf-Oriented BST
A

B

C F

C

E

B

Leaf-Oriented BST storing

key set {A,B,C,F}

Properties

• One leaf for each key in set

• Internal nodes used for

routing

• The tree is full

• BST Property

K

keys < K keys  K

Why Leaf-Oriented BSTs?

• Deletions are simpler.

• Average depth is only slightly higher.

Panagiota Fatourou Distributed Computing Mexico Summer School

Insertion (sequential version)

Insert(D)

• Search for D

• Remember leaf and its parent

• Create new leaf, replacement

leaf and one internal node

• Update pointer

A

B

C F

C

E

B

C D

D

Panagiota Fatourou Distributed Computing Mexico Summer School

Deletion (sequential version)

Delete(C)

• Search for C

• Remember leaf, its parent and

grandparent

• Update pointer

A

B

C F

C

E

B

Panagiota Fatourou Distributed Computing Mexico Summer School

Challenges of Concurrency

A

B

C F

C

E

B

C D

D

Concurrently, Delete(C) and Insert(D)

D is not reachable from the root!

Panagiota Fatourou Distributed Computing Mexico Summer School

Challenges of Concurrency

Concurrent Deletion of B and C

C is still reachable from the root!

Problem

A node’s child pointer is changed while the node is being
removed from the tree!

A

B

C F

C

E

B

Panagiota Fatourou Distributed Computing Mexico Summer School

NB-BST: The concurrent BST

Algorithm

• Flags and marks internal nodes during updates.

• Flag: indicates that an update is changing a
child pointer
– Flag an internal node x before changing a child

pointer of it

– Once the update has been performed, unflag x

• Mark: indicates that an internal node has be or
soon will be removed from the tree
– Mark an internal node x before removing it

– Node remains marked forever

Panagiota Fatourou Distributed Computing Mexico Summer School

The Insertion Algorithm

Insert(D)

• Search for D

• Remember leaf and its

parent

• Create three new nodes

• Flag parent (if this fails, step

back and retry)

• Update pointer (using CAS)

• Unflag parent

A

B

C F

C

E

B

C D

D

Panagiota Fatourou Distributed Computing Mexico Summer School

The Deletion Algorithm

Delete(C)

• Search for C

• Remember leaf, its parent and

grandparent

• Flag grandparent (if this fails, step

back and retry)

• Mark parent (if this fails, unflag

grandparent, step back, and retry)

• Update pointer

• Unflag grandparent

A

B

C F

C

E

B

Panagiota Fatourou Distributed Computing Mexico Summer School

Conflicting Operations now work

Concurrently, Delete(C) and Insert(D)

Case 1: Delete(C)’s flag and mark succeeds

Delete(C) will complete

Insert(D)’s flag fails
• Insert(D) will step back and retry

Case 2: Insert(D)’s flag succeeds

Insert(D) will complete

Delete(C)’s mark fails
• Delete(C) will step back and retry

A

B

C F

C

F

B

Panagiota Fatourou Distributed Computing Mexico Summer School

Conflicting Operations now Work!

Concurrent Deletion of B and C

Case 1: Delete(B)’s flag and mark succeeds

Delete(B) will complete

Delete(C)’s flag fails

• Delete(C) has to step back and retry

Case 2: Delete(C)’s flag succeeds

Delete(C) will complete

Delete(B)’s mark fails

• Delete(B) has to step back and retry

A

B

C F

C

E

B

Panagiota Fatourou Distributed Computing Mexico Summer School

Lock-Freedom

• Whenever flagging or marking, leave a key

under the doormat.

– A flag or mark points to a small record that tells

a thread how to help the original operation.

• If an operation fails to flag

or mark, it helps the previous

operation complete before

retrying.

B

A B

Info object
Insert(C)

Insert(C)

Panagiota Fatourou Distributed Computing Mexico Summer School

The algorithm for Find

• Searches just traverse a path of the

BST until reaching a leaf.

• They ignore flags and marks.

➢Algorithm for Find is similar to its

sequential version

Panagiota Fatourou Distributed Computing Mexico Summer School

Thank you!

https://harsh-project.gr/

https://persist-project.gr/

faturu@csd.uoc.gr

www.ics.forth.gr/~faturu/

Current Projects

I am looking for promising young researchers to recruit!

mailto:faturu@csd.uoc.gr
mailto:faturu@csd.uoc.gr
mailto:faturu@csd.uoc.gr
http://www.ics.forth.gr/~faturu/

