
Beyond reCAP: Local Reads and Linearizable Asynchronous Replication
A. Katsarakis*†, E. Gioratmis*♣, V. Gavrielatos†, P. Bhatotia♣, A. Dragojevic♦, B. Grot♠, V. Nagarajan♠, P . Fatourou♥

† Huawei Research, ♣TU Munich, ♦Citadel Securities, ♠University of Edinburgh, ♥University of Crete and FORTH, *Equal contribution

Theory

Crash-tolerant protocols: 2 out of 3

 RC protocols:
 - Relaxed Consistency
 + Asynchronous + Local reads

 LS protocols:
 - Synchronous
 + Linearizable
 + Local reads

 RA protocols:
 - Remote (costly) reads
 + Linearizable
 + Asynchronous

The L2AW theorem

Any Linearizable Asynchronous read/write register implementation that
 tolerates a crash (Without blocking reads or writes), has no Local reads.

 So can we not improve read performance without compromizes?

L2AW vs. CAP

 Both Linearizability & Asynchrony

 L2AW read performance in its tradeoff
 Key for read-dominant workloads

 Fault-tolerance
 CAP: network partitions
 + msg loss + partitioned nodes
 exec ops to violate safety
 L2AW: server crashes
 + no msg loss + crashed nodes
 do not exec ops to violate safety

 When must compromise?
 CAP: during network partitions
 (not during partition-free)
 sacrifice safety or progress of ops
 L2AW: always sacrifice local reads
 (even if crashes have not occurred)

Practice

Add missing piece to protocols
 of all 3 (RC, LS, RA) categories

RC with ALRs → Linearizable
LS with ALRs → Asynchronous
RA with ALRs → Performant

ALR-enhanced throughput
of state-of-the-art protocols

+ 2x perf
+ Linearizable

+ Asynchronous

Almost Local Reads (ALRs)

 Inevitably ALR latency > local reads
 But little or no extra network and
 processing costs to remote replicas

 ALRs batch reads with a twist
 Exec all reads in batch w/ local replica
 + one sync per batch on remote nodes

 Syncs are cheap!
•writes act as implicit zero-cost syncs
•explicit sync has small constant cost
•1 sync per batch regardless its size

Motivation

Fault-tolerant Replicated Datastores

• Crash-tolerance: data are replicated
• High performance: especially for reads
• Strong consistency under asynchrony
→ correct — even if timeouts do not hold

Crash-tolerant Replication Protocols
determine actions for reads and writes

 Ideal features
 1. Linearizable
 2. Asynchronous
 3. Local reads: for max perf.

Online Services & Cloud Applications

 Characterized by
• Many concurrent requests
• Read intensive workloads
• Need for data reliability

 → run on fault-prone h/w

†This work occurred when the authors were at the University of Edinburgh.

